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We present the theory of excitonic high-order sideband generation (HSG) in semiconductors by an intense
terahertz (THz) field. When the Coulomb interaction is neglected, we give an analytical solution to the HSG
with the help of Floquet theory. Besides, the HSG is also studied by the quantum trajectory theory (saddle-
point method) by which the HSG is explained by the interference of different quantum trajectories of excitons
when accelerating in the external THz field. Both the exact analytic solution and the saddle-point method
obtain consistent results: the spectrum of sidebands has an extended plateau where all the sidebands have
almost the same intensity, which is similar to the high-order harmonic generation in atomic system. Moreover
the HSG provides more flexibility in studying the quantum trajectory theory. When Coulomb interaction is
considered, we find considerable Coulomb enhancement of HSG, which is absent in atomic system. The

mechanism is discussed based on numerical calculations.
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I. INTRODUCTION

The behavior of excitons under an ac electric field is an
important issue in semiconductors. On one hand, excitons in
semiconductors have the characteristics of atoms so that
many similar effects have been “replicated” such as optical
Stark effect!? and exciton stabilization.® On the other hand,
as exciton is a most fundamental quasiparticle in semicon-
ductors when excited by lasers, its responses to the external
optical field manifest the intrinsic many-body coherence
such as the dynamical Franz-Keldysh effect* and the dy-
namic localization.>® Now that the ac electric field can be
realized by terahertz (THz) laser, excitons are expected to be
controlled more easily by manipulating THz fields and hence
have prosperous applications.

In semiconductors, one can create a hydrogen-atom-like
exciton by a near infrared laser. Under the THz radiation,
excitons absorb or emit different numbers of THz photons
and generate sidebands to the near infrared excitation. We
call this process as the excitonic high-order sideband genera-
tion (HSG).” The HSG in semiconductors has its counterpart
in atom physics, i.e., the high-order harmonic generation
(HHG),®® which has been a major topic for decades with
significant applications in attosecond physics'® such as
studying the time evolution of surface states using a pump-
probe technique.!'~!3

However, there exists essential difference between the
HHG in atomic physics and the HSG in semiconductors. The
Coulomb interaction plays an important role in exciton sys-
tem because the distance of each electron-hole pair in real
space is within the power of Coulomb interaction after they
are created from the vacuum state. In contrast, in the process
of HHG, once an electron is excited out, it is free of the ion
left behind and consequently the Coulomb interaction is neg-
ligible when driven by the electric field of the laser, which
was proved theoretically.” Moreover, the HSG starts from the
creation of elementary excitations in solids and hence has
tunable excitation energy while the HHG involves atoms
with fixed binding energy. Thus the THz-sideband spectros-
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copy is expected to provide more flexibility in studying the
quantum trajectory, developed in atomic physics to under-
stand the HHG. Recently, the quantum path interferences in
HHG in argon have been observed experimentally.'* We ex-
pect that the quantum path interference can be observed eas-
ily in semiconductors. Apart from a basic theoretical re-
search, the HSG is also useful in many electro-optical
applications such as wide-band optical multiplexers, optical
pulses with ultrahigh repetition rate, and optical communica-
tion with THz bandwidth.

In the paper, we investigate HSG in semiconductors and
get the consistent results by different methods. As we will
show, the sidebands spectrum exhibits an extended plateau
where all the sidebands have almost the same intensity. The
results can be explained by the interference of different
quantum trajectories based on a three-step model: (a) Exci-
tons are created by the laser excitation. (b) Driven by the
THz field, excitons accelerate along different quantum
trajectories and acquire particular energies. (c) Excitons
annihilate and generate sidebands contributed by different
trajectories. When Coulomb interaction is considered, we
find remarkable Coulomb enhancement effect in HSG, which
is a characteristic different from HHG in atomic system. The
mechanism of Coulomb enhancement effect is discussed
based on numerical calculations in different excitation con-
ditions.

The content of the paper is organized as follows: We first
derive the analytic result of the HSG in the absence of Cou-
lomb interaction in Sec. II. In Sec. III, the HSG is solved by
saddle-point method. The results are discussed based on the
quantum trajectory interference theory. In this section, the
spectra calculated by the analytical method and saddle-point
method are shown. The Coulomb enhancement effect is dis-
cussed in Sec. IV where the HSG is obtained by the space-
time difference method and the conclusion is based on the
numerical results under different excitation condition. Fi-
nally we present a brief summation. Some detailed deriva-
tions are appended for reference.

©2008 The American Physical Society
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II. ANALYTIC SOLUTION

In this section, we give an analytic solution to the HSG
without the Coulomb interaction considered. In semiconduc-
tors, a near infrared laser could excite electron-hole pairs and
thus excitons are formed. The dynamics relating to behaviors
of excitons are governed by the relative motion of electron-
hole pairs. Thus the Hamiltonian could be written in momen-
tum representation as

H= (G +k +k) +iF(0)V,, (1)

where F(r) is the electric field of THz laser F(f)=F cos(wt).
k;(j=x,y,z) are the excitonic wave vectors in j direction. For
convenience, we use the excitonic-Rydberg unit in the paper.
The Hamiltonian is time periodic and can be treated in
Floquet representation.'> The quasienergies and quasienergy
states read, respectively (see Appendix A)

2
& = E(k) + 22 Tme, (2)
and

|q(t)) — eimwt—2ikzv‘2y0/w €Os wt+iyy/2 sin 2w|k> (3)
b

where m is an integer, E (k) =k? is the energy of free exciton,
and 1, is defined as F?/2w>.

Sideband generation is determined by the responding
function

(t-1")

|0
X(tr) =" ek () )~ (gl 0 plg)].

(4)

where K(z,1') is the propagator of the system, V is the nor-
malized volume, and @ is the step function. u is the transition
dipole. In the formula above, the first item in the bracket
means a pair of electron hole is created at time ¢’ by transi-
tion u and evolves with the propagator K(z,¢') until time
t>1t" when recombination happens with transition w, and
finally the system returns to ground state. In the recombina-
tion process, the excitonic sidebands are generated so the
formula is just the description of HSG process. While the
second item is nothing but a conjugate item of the first one in
the bracket, we neglect it since then. The propagator is found
to be

K(t,1') = |q(e))e™ g (1) (5)

where 7y, is the introduced dephasing rate. Therefore the lin-
ear corresponding function can be written as

1 I # o —Inwt—i€,, Ty T
X(0t) = 72— 007) egmge™" ™7, (6)

m,n

where ,uq,mEleg<g|,LL|q(t’))ei’”‘°’dt’ and 7=r—t'. It is easy
to prove that the sideband spectrum x({),€)’) [Fourier trans-
formation of x(z,’)] has the property

x(Q, Q") =278Q - Q' —nw)x, ('), (7)

where x,()') is a factor only determined by the excitation
frequency €)'. The property gives the characteristic of side-
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band spectrum: discreet and equidistant with an interval of a
THz photon energy, which is the reflection of time periodic-
ity in the system.

The dipole transition matrix element {g|u|g(¢)) is (see Ap-
pendix B)

(ellq()) = Vi f 2k 27/ cos wrviny2 sin 20131 (g)

@2m)?

and the responding function is consequently (see Appendix

o)
iu? \/; . 21,2
l,f’ =0 e —i[F7 20 —iy,]T
x(t.1") (T)(zwﬁ( iT) e

. .2 o
Xez470 sin wT/Z/le nethouTk

- DT
<4y0 sin“7
n

wT

— Y sin (m') , 9)

with T*=(t+1")/2, i*’=—-1, and J,(--*) is the n-order Bessel
function of the first kind. With the Fourier transformation,
we obtain the spectrum function as

x(Q,Q) =2 278Q - Q' -2n0)x,,(Q"),  (10)

n

where x,,(Q') is

w 32 . ra 2 2.
XZn(‘Q’,) — MZ et el(2n—1)‘rr/4f dTet[Q +nw—-F“ 20 +iy,]T
4ar

i4y, sin? w1/2/wT
X(wT 37¢ 0 J,
4y, sin*%’
X(’yo sin oz)7'—T2 . (11)

The odd order sidebands disappear due to the breakdown of
symmetry in k, space, as discussed in Appendix C. The 2Nth
sideband strength is determined by x,,({)’). Notice that the
2Nth sideband is referred to the sideband with the frequency
Q+2Nw.

III. QUANTUM TRAJECTORY INTERFERENCE

The excitonic motion in the THz field determines the side-
band generation. From view of path integral, the excitons
move along different trajectories when driven by the THz
field. In this section, we get the HSG by the saddle-point
method, which demonstrates the interference of different
quantum trajectories. The Hamiltonian is transformed to

H()=(p-A)%, (12)

where p is momentum vector and A is the vector potential
A(t):—gsin(wt)éz. The Schrodinger equation is

i0,r,t) = H(t)Ydr,t) + mu- E(1) 8(r), (13)

where E(t) is the excitation E(1)=E, exp(-i{)t)+c.c., and p
is the vector form of the dipole w.
What we want to find is the polarization
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P(1) = if p Kt r't) ot —t" ) - E(t')S(r")drdr'dt’,
(14)

where K(rt,r't") is the propagator, which reads

K(rt,r’t’) — f dpeip.(r—r’)—if;,[p —A(r”)]zdz”. (15)

@m)?

Substituting the propagator back and making the Fourier
transformation, we can obtain the polarization

) d
P)y=PQ+2Nw)=ip" p- Epf e’SQ(T)dth(z—p)y
'
(16)

where we extract out a most important quantity:
t
Sp.t,7) =- f [p-A("d" + Qr+2Nwt.  (17)
-7

Equation (16) has a clear physical meaning as a sum of prob-
ability amplitudes corresponding to the following processes:
m-E, represents the excitation of a pair of electron and hole
by laser. The exciton propagates with the canonical momen-
tum p under THz electric field for a period of time 7=7—1¢'
then its wave function acquires a phase factor ¢*?>7 before
the recombination of electron and hole by transition u*.
(Here we neglect the dependence of dipole on the momen-
tum.) The quantity S(p,z,7) is just the quasiclassical action,
describing the motion of exciton in the ac electric field with
canonical momentum p, which is a conversed quantity in this
process.

The integral in Eq. (16) can be solved by saddle-point
method, an approximation considering the dominating part
coming from stationary points of the action. The stationary
points are determined by the saddle-point equations 4,5=0
(v=p,t,7), which read

pT— f A(t')dt' =0, (18)
[pP-A(-DF=0Q, (19)

and
p-AWP-[p-A(t- 1] =2No. (20)

These equations have very nice physical meaning to the pro-
cess of sibeband generation: As the velocity of the exciton
under ac electric field is p—A(7), Eq. (18) means the return of
the electron to the position of the hole after acceleration by
the electric field. While Egs. (19) and (20) express the energy
conservation of the excitation of e-h pair, and the energy
conservation for the sideband generation through recombina-
tion of e-h pair, respectively.

By solving these saddle-point equations, we can find the
relating saddle points 7, and ¢,. The action is then
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FIG. 1. The function of |27a7y| as a function of the return time
.

S(t,7) =2Nowt +(Q - U,) 7+ U,Tay cosQut — w7) + U,,Tyz,

(1)
where
. oT
) sin—
U F T 2 5 T
=—5, a=cos— - . B=sin—,
T2 ot
2
. T
sin—
and y= .
T
2

The action can give us some insight on the sideband genera-
tion result. As it describes the motion of exciton under the
electric field from which the exciton gets the energy incre-
ment to generate sidebands when in recombination, it is ob-
vious that the 27ay determines the variation of S, as a func-
tion of time and therefore determines the maximum energy it
can get from the electric field. It should note that 27ay has a
maximum of 3.17, as shown in Fig. 1. Consequently we can
get that the maximum sideband number (2N) lies about
3.17U p—Q/ w, which will be checked out later.
The strength of sidebands is finally obtained as

2742
det S’

iMZEpeiS(tn,Tn)
Py = E T - 3
w (V4T +0%)

(22)

where t,, 7, are the saddle points for 7,7 and the summation
runs over all corresponding saddle points. The infinitesimal
0* comes from the regularized Gaussian integration over p.
S” represents the second-order derivative Jacobian determi-
nant of the corresponding action:

PS(t,7) #S(t,7)

o i dtar ’
| St S, | (23)
gtor  IT

The HSG is then determined by x,,=|Pyy/E,|.
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FIG. 2. (Color online) The sideband strength calculated by
saddle-point method (symbols) and analytically (lines) with differ-
ent electric-field strength F. Results given by these two methods for
a certain value of F' are plotted with the same colors. Results with
different F' are shifted vertically for clarity. The frequency of exci-
tation is set as {1=—8 meV. THz photon energy is 5 meV.

The results calculated by saddle-point method are shown
in Figs. 2 and 3. The excitonic-Rydberg energy is set as 5
meV and the Bohr radius is 10 nm. The frequency of the ac
electric field is 5 meV. In Fig. 2, the THz field strength is
changed from 10 to 40 KV/cm by steps of 5 KV/cm with the
frequency of excitation fixed to 1=—8 meV (since the band
gap is set to zero, the frequency of the excitation is given
relative to the band gap). In Fig. 3, the frequency of excita-
tion is changed with four different values: -8, —18, —28, and
—38 meV with the THz field strength fixed to 30 KV/cm. All
the spectra have the same characteristic: it falls off for the
first few sidebands, then exhibits a plateau where all side-
bands have almost the same strength, and ends up with a
sharp cutoff. The cut-off position is consistent with the
analysis before.

Actually the sideband strength given above is the quan-
tum interference results of all different trajectories. As men-
tioned above, the final result should sum over all the saddle
points. For variable 7, every saddle point 7, represents the
time from excitation to recombination and so represents a

20 0 20 40 60 80 100
Sideband Number (2N)

FIG. 3. (Color online) The sideband strength calculated by
saddle-point method (symbols) and analytically (lines) with differ-
ent excitations (). The results given by these two methods for a
certain value of () are plotted with the same colors. Results with
different ) are shifted vertically for clarity. The strength of the THz
field is fixed to 30 KV/cm. THz photon energy is 5 meV.
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FIG. 4. (Color online) The interference of different quantum
trajectories. (a) The distribution of saddle points of 7,. Only those
relating to the first ten trajectories are given. Different trajectories
are classified by different symbols (colors). (b) The sideband
strength is generated by these ten trajectories, expressed with dif-
ferent color lines correspondingly. The interference result is plotted
with hollow circle line. The excitonic-Rydberg unit is used for 7and

Xon-

quantum trajectory. The time periodicity of the electric field
leads to the infinitude of 7, while the contribution coming
from 7, with large real part is less important. We use the
following parameters to discuss the interference of quantum
trajectories: the electric-field strength is 30 KV/cm with fre-
quency of 5 meV and excitation () of —8 meV. We only give
saddle points of first ten trajectories shown with different
symbols (colors) in Fig. 4(a). The sidebands generated by
these ten trajectories are plotted in Fig. 4(b) where the result
of interference is also shown. It is obvious that the interfer-
ence result of these ten trajectories is enough to get the ac-
curate result. Among these trajectories the first trajectories
(the saddle point of 7 with the least real part) has the largest
contribution to the sideband strength so that it almost deter-
mines the final result.

IV. COULOMB ENHANCEMENT EFFECT

As mentioned in Sec. I, the Coulomb interaction plays an
important role when excitons accelerate in the THz field. In
this section, we will discuss the effect of Coulomb interac-
tion. The HSG is based on the equation of motion in real
space

1)
i, = HOWprat) + - E(1) 5<z>—25f;, (24)
and
H=—(V2+ V) +F(t)z - —L (25)
14 4 Vrpz + Z2 ’
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FIG. 5. (Color online) The sideband strength calculated by finite
difference method with (solid line) and without (dashed line) Cou-
lomb interaction. Also the analytic result without Coulomb interac-
tion (hollow circle symbols) is given for reference. The strength of
THz field is 20 KV/cm and the frequency of excitation is
) =-8 meV. Other parameters are the same to those used in Fig. 2
except that the dephasing factor is set to 0.5 meV. The excitonic-
Rydberg unit is used for x,,.

where p and z are the relative coordinates of the electron and
hole in the x—y plane and z direction. We can get the side-
band spectrum by finite difference method.'®

Figure 5 shows the results calculated with finite difference
method with and without Coulomb interaction. The analytic
result is also plotted to testify the validity of numerical
method. The strength and frequency of the electric field are
20 KV/cm and 5 meV, respectively. The excitation is =
—8 meV and the dephasing factor of wave function is set to
0.5 meV. Without Coulomb interaction, the numerical result
accords well with the analytic one, which proves the validity
of the numerical method. With Coulomb interaction, the
sideband generation strength is enhanced with several orders
of magnitude while there is no significant difference in the
characteristics of the sideband such as the plateau and the
cut-off position. As discussed in Sec. I, it is the peculiar
characteristic of the exciton in semiconductors. Because the
Coulomb interaction cannot provide extra power, the un-
changing of the cut-off position is understandable while
which sidebands are enhanced more lies on the value of ex-
citation energy. In Fig. 5, the energy of near infrared laser is
below the gap of exciton continuum; therefore the excitation
is a kind of virtual process in the absence of Coulomb inter-
action. After the Coulomb interaction is considered, the pro-
cess turns from virtual process to real one because the den-
sity of states below the band edge is increased significantly
due to separated excitonic states. The change of state density
can significantly improve the probability of excitation so that
the strength of sideband generation is enhanced considerably.

If we use the near infrared laser with energy above the
band gap of exciton such as =18 meV, the influence of
Coulomb enhancement for most sideband N>0 is not ex-
pected so obviously because the excitation is always a real
physical process with or without Coulomb interaction, which
can be seen from Fig. 6. Interestingly, the obvious enhance-
ment is still observed for sideband N <0. The reason is that,
although the excitation is a real process in this case, the
combination is a virtual one without Coulomb interaction.
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FIG. 6. (Color online) The sideband strength calculated by finite
difference method with (solid line) and without (dashed line) the
Coulomb interaction. The strength of THz field is 20 KV/cm and
the excitation energy is (1=18 meV. Other parameters are the same
to those used in Fig. 5. The excitonic-Rydberg unit is used for y»,,.

Coulomb interaction will turn the combination process to a
real one then the strength of sideband generation is improved
significantly, which proves our explanation from another
side.

V. CONCLUSION

The HSG under an intense THz field in semiconductors is
investigated both analytically and numerically. Besides an
exact analytic solution, we get the spectrum of HSG by the
saddle-point method by which we present an explicit physi-
cal interpretation to the HSG by the interference of quantum
trajectories. In contrast with HHG in atom system, the HSG
of exciton in semiconductors has more flexibility in studying
the quantum trajectory such as the tunable excitation. More-
over, the considerable Coulomb enhancement effect is found
in exciton system. This enhancement due to the Coulomb
interaction can be explained by the transition between virtual
processes and real processes when excitonic creation or re-
combination happens. The discussion is supported by the nu-
merical results.
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APPENDIX A: FLOQUET REPRESENTATION

If the system is time periodic, i.e., the Hamiltonian satis-

fies
Hit+T)=H(1), (A1)

where T=27/ w, then the wave function can be written as
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) = e g (n)),

where m is an integer and |g(f)) is quasienergy wave func-
tion, satisfying the equation

(H=id)|q(1)) = (€,+ mw)|q(1)). (A3)

With a gauge transformation, the Hamiltonian H=k>
=E(k) has the free particle form and the wave vector be-
comes

(A2)

F .
k= ky.ky,k.— —sin wt |. (A4)
w
The quasienergy and quasienergy state are'’
(-
= Mo + —f E(k)dt', (A5)
Ty
and
4 o~
lg(1)) = exp| imot + i€, — if e(k)dt’ ||ky.  (A6)
0
Therefore, we can get the quasienergy
F2
€m=E(k) + = +mo, (A7)
2w
and hence the quasienergy states
|q(t)> — eimwt—2ik2\s“270/w cos wi+iyy/2 sin 2wt|k>’ (A8)

where 1y, is F?/20°.
APPENDIX B: DIPOLE TRANSITION MATRIX ELEMENT

The dipole transition matrix element can be expressed as

(glulg(®) =2 ™ . (B1)
where u, ,, is defined as
(" .
Hom =7 f (glulg(e"))e™dr". (B2)
0

Expanding the quasienergy state in momentum space, the
dipole transition matrix can be further written as

\4
(2 )gJ d kz e lmthqu km > (B3)

where w, 1, is defined as

(glulg(n)) =

(B4)

luq,km =
0

With the k& dependence of the dipole matrix element ne-
glected, the dipole matrix element of the Floquet state is'®

/2 .
Mg jm = i - m<2kz ﬂ’m)’ (BS)
w 2

where the Bessel function is defined as
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J(a,B) = %f 7Tal¢ explim¢—ia cos ¢ +if3 sin 2¢].

(B6)
Therefore the dipole transition matrix element is
<g|,u|q(t)> _ M J e—2ikz\5270/w €os wi+iyy/2 sin 2wtd3k.
@2m)?
(B7)

APPENDIX C: RESPONDING FUNCTION

Since the dipole transition matrix element is obtained, the
responding function is then

2 2 . 2
tt') = _9 T —1[F 1200 —l'yz]TJ dSke—zk T
x(t,t')=—0(1)— (2 )'5
% e4ikz\s‘270/w sin w7/2 sin wT*e(iyo sin w7 cos 2a)T*)’
(C1)

where 7" = (r+1')/2. The above integration over k, and k, is
easy to get. Using the properties of Bessel function, the re-
sponding function becomes

2 2
e—l[F2/2w2—572]7< E) 2 i
Qm)? i) =,

400
. ] 2
XJ, (= v sin w7)e2el x Zf dk,e %7y,

0 m

2 . =3
><J2,,,<4ikZ \/ ﬂsin“{)eﬂm” . (C2)
w

As for the integration over k,, it is important to notice that
the integration is zero for odd order Bessel function in the
integrand because of the asymmetry in k, space, which leads
to the vanishing of odd order sidebands, as shown later. The
breaking down of space symmetry in field direction is also
the main effect caused by THz field, in addition to the time
periodicity. After solving the integration,'” we can get the
responding function as

n 3
X(”)“H(T)él)3<\/;)

Xe—i[F 20 —i72]76i4y0 sin? wr2/wr

x(t.t )——ﬁ(r)

2nwT* 470 Sinz% :
Xe J|——-ysinwr|. (C3)
ot

With Fourier transformation, we get the spectrum function as

XQ.Q) =D 278Q - Q' —2n0)x,,(Q'), (C4)

where x,,()') is given by Eq. (11).
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